Increased ferric iron content and iron-induced oxidative stress in the brains of scrapie-infected mice.
نویسندگان
چکیده
Scrapie is a transmissible neurodegenerative disease of sheep and goats. The neuropathological changes include vacuolation, astrocytosis, the development of amyloid plaques in some instances, and neuronal loss. The mechanisms involved in neuronal cell death in scrapie are not known. Recently, we reported the presence of oxidative stress in the brains of scrapie-infected animals and suggested that this is the main mechanism that induces neuronal cell loss. It is known that oxidative stress induced by free radicals is associated with iron accumulation; this association led to an examination of the levels of iron (total iron, Fe(2+) and Fe(3+)) in the brains of control and scrapie-infected mice by biochemical methods. In the scrapie-infected group, both the level of total iron and the Fe(3+) level were significantly increased in cerebral cortex, striatum, and brainstem as compared to the values in the control group. A shift in the ratio of Fe(2+)/Fe(3+) was observed in the same regions of infected mice. Additionally, in this scrapie model, we confirmed the presence of oxidative stress, as evidenced by the increase of free malondialdehyde. These results suggest that iron metabolism is changed and that iron-induced oxidative stress partly contributes to neurodegeneration in scrapie infection.
منابع مشابه
Vulnerability of Prepubertal Mice Testis to Iron Induced Oxidative Dysfunctions In Vivo and Functional Implications
Background The present study describes the susceptibility of prepubertal testis of mice to prooxidant induced oxidative impairments both under in vitro and in vivo exposure conditions. MaterialsAndMethods Following in vitro exposure to iron (5,10 and 25 M), oxidative response measured in terms of lipid peroxidation and hydroperoxide levels in testis of pre pubertal mice (4 wk) was more robust c...
متن کاملZataria multiflora Essential oil Prevent Iron Oxide Nanoparticles-induced Liver Toxicity in Rat Model
Over loading of iron oxide nanoparticles can causes the liver injury through overproduction of free radicals. Zataria multiflora Boiss. (Lamiaceae) has been used for many years in folk medicine due to its antioxidant and antibacterial activities. This study evaluates -for the first time- the effect of Z. multiflora essential oil (EO) against iron oxide nanoparticles hepatotoxicity in rat model....
متن کاملEFFECT OF IRON OVERLOAD ON 7, 12-DIMETHYLBENZ (A) ANTHRACENE-INDUCED SKIN TUMORIGENESIS
Iron overload is known to occur in the West European and American population due to the consumption of iron-rich diets. On the other hand, genetic disorders leading to iron overload are also known. Iron overload leads to increased peroxidation and disruptive disintegration of lipid-rich membranes, and predisposes humans for an enhanced risk of cancer induction. In experimental animals iron ...
متن کاملP-85: Evaluation of Sperm Fertility Quality in Phenyl Hydrazine-Induced Hemolytic Anemia Impacts on Mice
Background: Anemia and consequently low oxygen can cause changes in the function and structure of the testis and spermatogenesis, Iron released from red blood cells, followed by the increased oxidative stress, which may cause tissue iron. This study was designed to minimize the deleterious effects of hypoxia on the genitals. Materials and Methods: Eighteen mature male mice were randomly divided...
متن کاملEfficacy and toxicity of intravenous iron in a mouse model of critical care anemia*.
OBJECTIVE Anemia is common in critically ill patients, due to inflammation and blood loss. Anemia can be associated with iron deficiency and low serum hepcidin levels. However, iron administration in this setting remains controversial because of its potential toxicity, including oxidative stress induction and sepsis facilitation. The objective of this work was to determine the efficacy and toxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 884 1--2 شماره
صفحات -
تاریخ انتشار 2000